Metamath Proof Explorer


Theorem elimnvu

Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007) (New usage is discouraged.)

Ref Expression
Assertion elimnvu if U NrmCVec U + × abs NrmCVec

Proof

Step Hyp Ref Expression
1 eqid + × abs = + × abs
2 1 cnnv + × abs NrmCVec
3 2 elimel if U NrmCVec U + × abs NrmCVec