Metamath Proof Explorer


Theorem elina

Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion elina A Inacc A cf A = A x A 𝒫 x A

Proof

Step Hyp Ref Expression
1 elex A Inacc A V
2 fvex cf A V
3 eleq1 cf A = A cf A V A V
4 2 3 mpbii cf A = A A V
5 4 3ad2ant2 A cf A = A x A 𝒫 x A A V
6 neeq1 y = A y A
7 fveq2 y = A cf y = cf A
8 eqeq12 cf y = cf A y = A cf y = y cf A = A
9 7 8 mpancom y = A cf y = y cf A = A
10 breq2 y = A 𝒫 x y 𝒫 x A
11 10 raleqbi1dv y = A x y 𝒫 x y x A 𝒫 x A
12 6 9 11 3anbi123d y = A y cf y = y x y 𝒫 x y A cf A = A x A 𝒫 x A
13 df-ina Inacc = y | y cf y = y x y 𝒫 x y
14 12 13 elab2g A V A Inacc A cf A = A x A 𝒫 x A
15 1 5 14 pm5.21nii A Inacc A cf A = A x A 𝒫 x A