Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
elint2
Next ⟩
elintg
Metamath Proof Explorer
Ascii
Unicode
Theorem
elint2
Description:
Membership in class intersection.
(Contributed by
NM
, 14-Oct-1999)
Ref
Expression
Hypothesis
elint2.1
⊢
A
∈
V
Assertion
elint2
⊢
A
∈
⋂
B
↔
∀
x
∈
B
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
elint2.1
⊢
A
∈
V
2
1
elint
⊢
A
∈
⋂
B
↔
∀
x
x
∈
B
→
A
∈
x
3
df-ral
⊢
∀
x
∈
B
A
∈
x
↔
∀
x
x
∈
B
→
A
∈
x
4
2
3
bitr4i
⊢
A
∈
⋂
B
↔
∀
x
∈
B
A
∈
x