Metamath Proof Explorer


Theorem elintab

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis elintab.ex A V
Assertion elintab A x | φ x φ A x

Proof

Step Hyp Ref Expression
1 elintab.ex A V
2 elintabg A V A x | φ x φ A x
3 1 2 ax-mp A x | φ x φ A x