Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
elintab
Next ⟩
elintrab
Metamath Proof Explorer
Ascii
Unicode
Theorem
elintab
Description:
Membership in the intersection of a class abstraction.
(Contributed by
NM
, 30-Aug-1993)
Ref
Expression
Hypothesis
inteqab.1
⊢
A
∈
V
Assertion
elintab
⊢
A
∈
⋂
x
|
φ
↔
∀
x
φ
→
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
inteqab.1
⊢
A
∈
V
2
1
elint
⊢
A
∈
⋂
x
|
φ
↔
∀
y
y
∈
x
|
φ
→
A
∈
y
3
nfsab1
⊢
Ⅎ
x
y
∈
x
|
φ
4
nfv
⊢
Ⅎ
x
A
∈
y
5
3
4
nfim
⊢
Ⅎ
x
y
∈
x
|
φ
→
A
∈
y
6
nfv
⊢
Ⅎ
y
φ
→
A
∈
x
7
eleq1w
⊢
y
=
x
→
y
∈
x
|
φ
↔
x
∈
x
|
φ
8
abid
⊢
x
∈
x
|
φ
↔
φ
9
7
8
bitrdi
⊢
y
=
x
→
y
∈
x
|
φ
↔
φ
10
eleq2w
⊢
y
=
x
→
A
∈
y
↔
A
∈
x
11
9
10
imbi12d
⊢
y
=
x
→
y
∈
x
|
φ
→
A
∈
y
↔
φ
→
A
∈
x
12
5
6
11
cbvalv1
⊢
∀
y
y
∈
x
|
φ
→
A
∈
y
↔
∀
x
φ
→
A
∈
x
13
2
12
bitri
⊢
A
∈
⋂
x
|
φ
↔
∀
x
φ
→
A
∈
x