Metamath Proof Explorer


Theorem elintdv

Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses elintdv.1 φ A V
elintdv.2 φ x B A x
Assertion elintdv φ A B

Proof

Step Hyp Ref Expression
1 elintdv.1 φ A V
2 elintdv.2 φ x B A x
3 nfv x φ
4 3 1 2 elintd φ A B