Metamath Proof Explorer


Theorem elintrab

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999)

Ref Expression
Hypothesis inteqab.1 A V
Assertion elintrab A x B | φ x B φ A x

Proof

Step Hyp Ref Expression
1 inteqab.1 A V
2 1 elintab A x | x B φ x x B φ A x
3 impexp x B φ A x x B φ A x
4 3 albii x x B φ A x x x B φ A x
5 2 4 bitri A x | x B φ x x B φ A x
6 df-rab x B | φ = x | x B φ
7 6 inteqi x B | φ = x | x B φ
8 7 eleq2i A x B | φ A x | x B φ
9 df-ral x B φ A x x x B φ A x
10 5 8 9 3bitr4i A x B | φ x B φ A x