Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
elintrab
Next ⟩
elintrabg
Metamath Proof Explorer
Ascii
Unicode
Theorem
elintrab
Description:
Membership in the intersection of a class abstraction.
(Contributed by
NM
, 17-Oct-1999)
Ref
Expression
Hypothesis
inteqab.1
⊢
A
∈
V
Assertion
elintrab
⊢
A
∈
⋂
x
∈
B
|
φ
↔
∀
x
∈
B
φ
→
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
inteqab.1
⊢
A
∈
V
2
1
elintab
⊢
A
∈
⋂
x
|
x
∈
B
∧
φ
↔
∀
x
x
∈
B
∧
φ
→
A
∈
x
3
impexp
⊢
x
∈
B
∧
φ
→
A
∈
x
↔
x
∈
B
→
φ
→
A
∈
x
4
3
albii
⊢
∀
x
x
∈
B
∧
φ
→
A
∈
x
↔
∀
x
x
∈
B
→
φ
→
A
∈
x
5
2
4
bitri
⊢
A
∈
⋂
x
|
x
∈
B
∧
φ
↔
∀
x
x
∈
B
→
φ
→
A
∈
x
6
df-rab
⊢
x
∈
B
|
φ
=
x
|
x
∈
B
∧
φ
7
6
inteqi
⊢
⋂
x
∈
B
|
φ
=
⋂
x
|
x
∈
B
∧
φ
8
7
eleq2i
⊢
A
∈
⋂
x
∈
B
|
φ
↔
A
∈
⋂
x
|
x
∈
B
∧
φ
9
df-ral
⊢
∀
x
∈
B
φ
→
A
∈
x
↔
∀
x
x
∈
B
→
φ
→
A
∈
x
10
5
8
9
3bitr4i
⊢
A
∈
⋂
x
∈
B
|
φ
↔
∀
x
∈
B
φ
→
A
∈
x