Metamath Proof Explorer


Theorem elintrabg

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007)

Ref Expression
Assertion elintrabg A V A x B | φ x B φ A x

Proof

Step Hyp Ref Expression
1 eleq1 y = A y x B | φ A x B | φ
2 eleq1 y = A y x A x
3 2 imbi2d y = A φ y x φ A x
4 3 ralbidv y = A x B φ y x x B φ A x
5 vex y V
6 5 elintrab y x B | φ x B φ y x
7 1 4 6 vtoclbg A V A x B | φ x B φ A x