Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The intersection of a class
elintrabg
Next ⟩
int0
Metamath Proof Explorer
Ascii
Unicode
Theorem
elintrabg
Description:
Membership in the intersection of a class abstraction.
(Contributed by
NM
, 17-Feb-2007)
Ref
Expression
Assertion
elintrabg
⊢
A
∈
V
→
A
∈
⋂
x
∈
B
|
φ
↔
∀
x
∈
B
φ
→
A
∈
x
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
y
=
A
→
y
∈
⋂
x
∈
B
|
φ
↔
A
∈
⋂
x
∈
B
|
φ
2
eleq1
⊢
y
=
A
→
y
∈
x
↔
A
∈
x
3
2
imbi2d
⊢
y
=
A
→
φ
→
y
∈
x
↔
φ
→
A
∈
x
4
3
ralbidv
⊢
y
=
A
→
∀
x
∈
B
φ
→
y
∈
x
↔
∀
x
∈
B
φ
→
A
∈
x
5
vex
⊢
y
∈
V
6
5
elintrab
⊢
y
∈
⋂
x
∈
B
|
φ
↔
∀
x
∈
B
φ
→
y
∈
x
7
1
4
6
vtoclbg
⊢
A
∈
V
→
A
∈
⋂
x
∈
B
|
φ
↔
∀
x
∈
B
φ
→
A
∈
x