Metamath Proof Explorer


Theorem elioc2

Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007) (Revised by Mario Carneiro, 14-Jun-2014)

Ref Expression
Assertion elioc2 A * B C A B C A < C C B

Proof

Step Hyp Ref Expression
1 rexr B B *
2 elioc1 A * B * C A B C * A < C C B
3 1 2 sylan2 A * B C A B C * A < C C B
4 mnfxr −∞ *
5 4 a1i A * B C * A < C C B −∞ *
6 simpll A * B C * A < C C B A *
7 simpr1 A * B C * A < C C B C *
8 mnfle A * −∞ A
9 8 ad2antrr A * B C * A < C C B −∞ A
10 simpr2 A * B C * A < C C B A < C
11 5 6 7 9 10 xrlelttrd A * B C * A < C C B −∞ < C
12 1 ad2antlr A * B C * A < C C B B *
13 pnfxr +∞ *
14 13 a1i A * B C * A < C C B +∞ *
15 simpr3 A * B C * A < C C B C B
16 ltpnf B B < +∞
17 16 ad2antlr A * B C * A < C C B B < +∞
18 7 12 14 15 17 xrlelttrd A * B C * A < C C B C < +∞
19 xrrebnd C * C −∞ < C C < +∞
20 7 19 syl A * B C * A < C C B C −∞ < C C < +∞
21 11 18 20 mpbir2and A * B C * A < C C B C
22 21 10 15 3jca A * B C * A < C C B C A < C C B
23 22 ex A * B C * A < C C B C A < C C B
24 rexr C C *
25 24 3anim1i C A < C C B C * A < C C B
26 23 25 impbid1 A * B C * A < C C B C A < C C B
27 3 26 bitrd A * B C A B C A < C C B