Metamath Proof Explorer


Theorem elioo1

Description: Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion elioo1 A * B * C A B C * A < C C < B

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 1 elixx1 A * B * C A B C * A < C C < B