Metamath Proof Explorer


Theorem elioo4g

Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elioo4g C A B A * B * C A < C C < B

Proof

Step Hyp Ref Expression
1 eliooxr C A B A * B *
2 elioore C A B C
3 1 2 jca C A B A * B * C
4 df-3an A * B * C A * B * C
5 3 4 sylibr C A B A * B * C
6 eliooord C A B A < C C < B
7 5 6 jca C A B A * B * C A < C C < B
8 rexr C C *
9 8 3anim3i A * B * C A * B * C *
10 9 anim1i A * B * C A < C C < B A * B * C * A < C C < B
11 elioo3g C A B A * B * C * A < C C < B
12 10 11 sylibr A * B * C A < C C < B C A B
13 7 12 impbii C A B A * B * C A < C C < B