Database
REAL AND COMPLEX NUMBERS
Order sets
Real number intervals
elioo5
Next ⟩
eliooxr
Metamath Proof Explorer
Ascii
Unicode
Theorem
elioo5
Description:
Membership in an open interval of extended reals.
(Contributed by
NM
, 17-Aug-2008)
Ref
Expression
Assertion
elioo5
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
C
∈
A
B
↔
A
<
C
∧
C
<
B
Proof
Step
Hyp
Ref
Expression
1
elioo1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
C
∈
A
B
↔
C
∈
ℝ
*
∧
A
<
C
∧
C
<
B
2
1
3adant3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
C
∈
A
B
↔
C
∈
ℝ
*
∧
A
<
C
∧
C
<
B
3
3anass
⊢
C
∈
ℝ
*
∧
A
<
C
∧
C
<
B
↔
C
∈
ℝ
*
∧
A
<
C
∧
C
<
B
4
3
baibr
⊢
C
∈
ℝ
*
→
A
<
C
∧
C
<
B
↔
C
∈
ℝ
*
∧
A
<
C
∧
C
<
B
5
4
3ad2ant3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
<
C
∧
C
<
B
↔
C
∈
ℝ
*
∧
A
<
C
∧
C
<
B
6
2
5
bitr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
C
∈
A
B
↔
A
<
C
∧
C
<
B