Metamath Proof Explorer


Theorem elioo5

Description: Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008)

Ref Expression
Assertion elioo5 A * B * C * C A B A < C C < B

Proof

Step Hyp Ref Expression
1 elioo1 A * B * C A B C * A < C C < B
2 1 3adant3 A * B * C * C A B C * A < C C < B
3 3anass C * A < C C < B C * A < C C < B
4 3 baibr C * A < C C < B C * A < C C < B
5 4 3ad2ant3 A * B * C * A < C C < B C * A < C C < B
6 2 5 bitr4d A * B * C * C A B A < C C < B