Metamath Proof Explorer


Theorem eliooord

Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eliooord A B C B < A A < C

Proof

Step Hyp Ref Expression
1 eliooxr A B C B * C *
2 elioo2 B * C * A B C A B < A A < C
3 1 2 syl A B C A B C A B < A A < C
4 3 ibi A B C A B < A A < C
5 3simpc A B < A A < C B < A A < C
6 4 5 syl A B C B < A A < C