Metamath Proof Explorer


Theorem elioore

Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion elioore A B C A

Proof

Step Hyp Ref Expression
1 elioo3g A B C B * C * A * B < A A < C
2 3ancomb B * C * A * B * A * C *
3 xrre2 B * A * C * B < A A < C A
4 2 3 sylanb B * C * A * B < A A < C A
5 1 4 sylbi A B C A