Metamath Proof Explorer


Theorem eliooshift

Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliooshift.a φ A
eliooshift.b φ B
eliooshift.c φ C
eliooshift.d φ D
Assertion eliooshift φ A B C A + D B + D C + D

Proof

Step Hyp Ref Expression
1 eliooshift.a φ A
2 eliooshift.b φ B
3 eliooshift.c φ C
4 eliooshift.d φ D
5 1 4 readdcld φ A + D
6 5 1 2thd φ A + D A
7 2 1 4 ltadd1d φ B < A B + D < A + D
8 7 bicomd φ B + D < A + D B < A
9 1 3 4 ltadd1d φ A < C A + D < C + D
10 9 bicomd φ A + D < C + D A < C
11 6 8 10 3anbi123d φ A + D B + D < A + D A + D < C + D A B < A A < C
12 2 4 readdcld φ B + D
13 12 rexrd φ B + D *
14 3 4 readdcld φ C + D
15 14 rexrd φ C + D *
16 elioo2 B + D * C + D * A + D B + D C + D A + D B + D < A + D A + D < C + D
17 13 15 16 syl2anc φ A + D B + D C + D A + D B + D < A + D A + D < C + D
18 2 rexrd φ B *
19 3 rexrd φ C *
20 elioo2 B * C * A B C A B < A A < C
21 18 19 20 syl2anc φ A B C A B < A A < C
22 11 17 21 3bitr4rd φ A B C A + D B + D C + D