Metamath Proof Explorer


Theorem elisset

Description: An element of a class exists. (Contributed by NM, 1-May-1995) Reduce dependencies on axioms. (Revised by BJ, 29-Apr-2019)

Ref Expression
Assertion elisset A V x x = A

Proof

Step Hyp Ref Expression
1 elissetv A V y y = A
2 vextru y z |
3 2 biantru y = A y = A y z |
4 3 exbii y y = A y y = A y z |
5 dfclel A z | y y = A y z |
6 4 5 bitr4i y y = A A z |
7 vextru x z |
8 7 biantru x = A x = A x z |
9 8 exbii x x = A x x = A x z |
10 dfclel A z | x x = A x z |
11 9 10 bitr4i x x = A A z |
12 6 11 bitr4i y y = A x x = A
13 1 12 sylib A V x x = A