Metamath Proof Explorer


Theorem eliuni

Description: Membership in an indexed union, one way. (Contributed by JJ, 27-Jul-2021)

Ref Expression
Hypothesis eliuni.1 x = A B = C
Assertion eliuni A D E C E x D B

Proof

Step Hyp Ref Expression
1 eliuni.1 x = A B = C
2 1 eleq2d x = A E B E C
3 2 rspcev A D E C x D E B
4 eliun E x D B x D E B
5 3 4 sylibr A D E C E x D B