Metamath Proof Explorer


Theorem eliuniincex

Description: Counterexample to show that the additional conditions in eliuniin and eliuniin2 are actually needed. Notice that the definition of A is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eliuniincex.1 B =
eliuniincex.2 C =
eliuniincex.3 D =
eliuniincex.4 Z = V
Assertion eliuniincex ¬ Z A x B y C Z D

Proof

Step Hyp Ref Expression
1 eliuniincex.1 B =
2 eliuniincex.2 C =
3 eliuniincex.3 D =
4 eliuniincex.4 Z = V
5 nvel ¬ V A
6 4 5 eqneltri ¬ Z A
7 0ex V
8 7 snid
9 8 1 eleqtrri B
10 ral0 y Z D
11 nfcv _ x
12 nfcv _ x Z
13 3 11 nfcxfr _ x D
14 12 13 nfel x Z D
15 11 14 nfral x y Z D
16 2 raleqi y C Z D y Z D
17 16 a1i x = y C Z D y Z D
18 15 17 rspce B y Z D x B y C Z D
19 9 10 18 mp2an x B y C Z D
20 pm3.22 ¬ Z A x B y C Z D x B y C Z D ¬ Z A
21 20 olcd ¬ Z A x B y C Z D Z A ¬ x B y C Z D x B y C Z D ¬ Z A
22 xor ¬ Z A x B y C Z D Z A ¬ x B y C Z D x B y C Z D ¬ Z A
23 21 22 sylibr ¬ Z A x B y C Z D ¬ Z A x B y C Z D
24 6 19 23 mp2an ¬ Z A x B y C Z D