Metamath Proof Explorer


Theorem elixpconst

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by NM, 12-Apr-2008)

Ref Expression
Hypothesis elixp.1 F V
Assertion elixpconst F x A B F : A B

Proof

Step Hyp Ref Expression
1 elixp.1 F V
2 1 elixp F x A B F Fn A x A F x B
3 ffnfv F : A B F Fn A x A F x B
4 2 3 bitr4i F x A B F : A B