Metamath Proof Explorer


Theorem elixpconstg

Description: Membership in an infinite Cartesian product of a constant B . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion elixpconstg F V F x A B F : A B

Proof

Step Hyp Ref Expression
1 ixpfn F x A B F Fn A
2 elixp2 F x A B F V F Fn A x A F x B
3 2 simp3bi F x A B x A F x B
4 ffnfv F : A B F Fn A x A F x B
5 1 3 4 sylanbrc F x A B F : A B
6 elex F V F V
7 6 adantr F V F : A B F V
8 ffn F : A B F Fn A
9 8 adantl F V F : A B F Fn A
10 4 simprbi F : A B x A F x B
11 10 adantl F V F : A B x A F x B
12 7 9 11 2 syl3anbrc F V F : A B F x A B
13 12 ex F V F : A B F x A B
14 5 13 impbid2 F V F x A B F : A B