Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|
2 |
1
|
ixpeq1d |
|
3 |
2
|
eleq2d |
|
4 |
|
opeq1 |
|
5 |
4
|
sneqd |
|
6 |
5
|
eqeq2d |
|
7 |
6
|
rexbidv |
|
8 |
|
elex |
|
9 |
|
snex |
|
10 |
|
eleq1 |
|
11 |
9 10
|
mpbiri |
|
12 |
11
|
rexlimivw |
|
13 |
|
eleq1 |
|
14 |
|
eqeq1 |
|
15 |
14
|
rexbidv |
|
16 |
|
vex |
|
17 |
16
|
elixp |
|
18 |
|
vex |
|
19 |
|
fveq2 |
|
20 |
19
|
eleq1d |
|
21 |
18 20
|
ralsn |
|
22 |
21
|
anbi2i |
|
23 |
|
simpl |
|
24 |
|
fveq2 |
|
25 |
24
|
eleq1d |
|
26 |
18 25
|
ralsn |
|
27 |
26
|
biimpri |
|
28 |
27
|
adantl |
|
29 |
|
ffnfv |
|
30 |
23 28 29
|
sylanbrc |
|
31 |
18
|
fsn2 |
|
32 |
30 31
|
sylib |
|
33 |
|
opeq2 |
|
34 |
33
|
sneqd |
|
35 |
34
|
rspceeqv |
|
36 |
32 35
|
syl |
|
37 |
|
vex |
|
38 |
18 37
|
fvsn |
|
39 |
|
id |
|
40 |
38 39
|
eqeltrid |
|
41 |
18 37
|
fnsn |
|
42 |
40 41
|
jctil |
|
43 |
|
fneq1 |
|
44 |
|
fveq1 |
|
45 |
44
|
eleq1d |
|
46 |
43 45
|
anbi12d |
|
47 |
42 46
|
syl5ibrcom |
|
48 |
47
|
rexlimiv |
|
49 |
36 48
|
impbii |
|
50 |
17 22 49
|
3bitri |
|
51 |
13 15 50
|
vtoclbg |
|
52 |
8 12 51
|
pm5.21nii |
|
53 |
3 7 52
|
vtoclbg |
|