Metamath Proof Explorer


Theorem elixx1

Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis ixx.1 O = x * , y * z * | x R z z S y
Assertion elixx1 A * B * C A O B C * A R C C S B

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 1 ixxval A * B * A O B = z * | A R z z S B
3 2 eleq2d A * B * C A O B C z * | A R z z S B
4 breq2 z = C A R z A R C
5 breq1 z = C z S B C S B
6 4 5 anbi12d z = C A R z z S B A R C C S B
7 6 elrab C z * | A R z z S B C * A R C C S B
8 3anass C * A R C C S B C * A R C C S B
9 7 8 bitr4i C z * | A R z z S B C * A R C C S B
10 3 9 bitrdi A * B * C A O B C * A R C C S B