Metamath Proof Explorer


Theorem elkgen

Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion elkgen J TopOn X A 𝑘Gen J A X k 𝒫 X J 𝑡 k Comp A k J 𝑡 k

Proof

Step Hyp Ref Expression
1 kgenval J TopOn X 𝑘Gen J = x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k
2 1 eleq2d J TopOn X A 𝑘Gen J A x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k
3 ineq1 x = A x k = A k
4 3 eleq1d x = A x k J 𝑡 k A k J 𝑡 k
5 4 imbi2d x = A J 𝑡 k Comp x k J 𝑡 k J 𝑡 k Comp A k J 𝑡 k
6 5 ralbidv x = A k 𝒫 X J 𝑡 k Comp x k J 𝑡 k k 𝒫 X J 𝑡 k Comp A k J 𝑡 k
7 6 elrab A x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k A 𝒫 X k 𝒫 X J 𝑡 k Comp A k J 𝑡 k
8 toponmax J TopOn X X J
9 elpw2g X J A 𝒫 X A X
10 8 9 syl J TopOn X A 𝒫 X A X
11 10 anbi1d J TopOn X A 𝒫 X k 𝒫 X J 𝑡 k Comp A k J 𝑡 k A X k 𝒫 X J 𝑡 k Comp A k J 𝑡 k
12 7 11 syl5bb J TopOn X A x 𝒫 X | k 𝒫 X J 𝑡 k Comp x k J 𝑡 k A X k 𝒫 X J 𝑡 k Comp A k J 𝑡 k
13 2 12 bitrd J TopOn X A 𝑘Gen J A X k 𝒫 X J 𝑡 k Comp A k J 𝑡 k