Database
BASIC TOPOLOGY
Topology
Compactly generated spaces
elkgen
Next ⟩
kgeni
Metamath Proof Explorer
Ascii
Unicode
Theorem
elkgen
Description:
Value of the compact generator.
(Contributed by
Mario Carneiro
, 20-Mar-2015)
Ref
Expression
Assertion
elkgen
⊢
J
∈
TopOn
⁡
X
→
A
∈
𝑘Gen
⁡
J
↔
A
⊆
X
∧
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
Proof
Step
Hyp
Ref
Expression
1
kgenval
⊢
J
∈
TopOn
⁡
X
→
𝑘Gen
⁡
J
=
x
∈
𝒫
X
|
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
x
∩
k
∈
J
↾
𝑡
k
2
1
eleq2d
⊢
J
∈
TopOn
⁡
X
→
A
∈
𝑘Gen
⁡
J
↔
A
∈
x
∈
𝒫
X
|
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
x
∩
k
∈
J
↾
𝑡
k
3
ineq1
⊢
x
=
A
→
x
∩
k
=
A
∩
k
4
3
eleq1d
⊢
x
=
A
→
x
∩
k
∈
J
↾
𝑡
k
↔
A
∩
k
∈
J
↾
𝑡
k
5
4
imbi2d
⊢
x
=
A
→
J
↾
𝑡
k
∈
Comp
→
x
∩
k
∈
J
↾
𝑡
k
↔
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
6
5
ralbidv
⊢
x
=
A
→
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
x
∩
k
∈
J
↾
𝑡
k
↔
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
7
6
elrab
⊢
A
∈
x
∈
𝒫
X
|
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
x
∩
k
∈
J
↾
𝑡
k
↔
A
∈
𝒫
X
∧
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
8
toponmax
⊢
J
∈
TopOn
⁡
X
→
X
∈
J
9
elpw2g
⊢
X
∈
J
→
A
∈
𝒫
X
↔
A
⊆
X
10
8
9
syl
⊢
J
∈
TopOn
⁡
X
→
A
∈
𝒫
X
↔
A
⊆
X
11
10
anbi1d
⊢
J
∈
TopOn
⁡
X
→
A
∈
𝒫
X
∧
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
↔
A
⊆
X
∧
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
12
7
11
syl5bb
⊢
J
∈
TopOn
⁡
X
→
A
∈
x
∈
𝒫
X
|
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
x
∩
k
∈
J
↾
𝑡
k
↔
A
⊆
X
∧
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k
13
2
12
bitrd
⊢
J
∈
TopOn
⁡
X
→
A
∈
𝑘Gen
⁡
J
↔
A
⊆
X
∧
∀
k
∈
𝒫
X
J
↾
𝑡
k
∈
Comp
→
A
∩
k
∈
J
↾
𝑡
k