Metamath Proof Explorer


Theorem ellimc3

Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses ellimc3.f φ F : A
ellimc3.a φ A
ellimc3.b φ B
Assertion ellimc3 φ C F lim B C x + y + z A z B z B < y F z C < x

Proof

Step Hyp Ref Expression
1 ellimc3.f φ F : A
2 ellimc3.a φ A
3 ellimc3.b φ B
4 eqid TopOpen fld = TopOpen fld
5 1 2 3 4 ellimc2 φ C F lim B C u TopOpen fld C u v TopOpen fld B v F v A B u
6 cnxmet abs ∞Met
7 simplr φ C x + C
8 simpr φ C x + x +
9 blcntr abs ∞Met C x + C C ball abs x
10 6 7 8 9 mp3an2i φ C x + C C ball abs x
11 rpxr x + x *
12 11 adantl φ C x + x *
13 4 cnfldtopn TopOpen fld = MetOpen abs
14 13 blopn abs ∞Met C x * C ball abs x TopOpen fld
15 6 7 12 14 mp3an2i φ C x + C ball abs x TopOpen fld
16 eleq2 u = C ball abs x C u C C ball abs x
17 sseq2 u = C ball abs x F v A B u F v A B C ball abs x
18 17 anbi2d u = C ball abs x B v F v A B u B v F v A B C ball abs x
19 18 rexbidv u = C ball abs x v TopOpen fld B v F v A B u v TopOpen fld B v F v A B C ball abs x
20 16 19 imbi12d u = C ball abs x C u v TopOpen fld B v F v A B u C C ball abs x v TopOpen fld B v F v A B C ball abs x
21 20 rspcv C ball abs x TopOpen fld u TopOpen fld C u v TopOpen fld B v F v A B u C C ball abs x v TopOpen fld B v F v A B C ball abs x
22 15 21 syl φ C x + u TopOpen fld C u v TopOpen fld B v F v A B u C C ball abs x v TopOpen fld B v F v A B C ball abs x
23 10 22 mpid φ C x + u TopOpen fld C u v TopOpen fld B v F v A B u v TopOpen fld B v F v A B C ball abs x
24 13 mopni2 abs ∞Met v TopOpen fld B v y + B ball abs y v
25 6 24 mp3an1 v TopOpen fld B v y + B ball abs y v
26 ssrin B ball abs y v B ball abs y A B v A B
27 imass2 B ball abs y A B v A B F B ball abs y A B F v A B
28 sstr2 F B ball abs y A B F v A B F v A B C ball abs x F B ball abs y A B C ball abs x
29 26 27 28 3syl B ball abs y v F v A B C ball abs x F B ball abs y A B C ball abs x
30 29 com12 F v A B C ball abs x B ball abs y v F B ball abs y A B C ball abs x
31 30 reximdv F v A B C ball abs x y + B ball abs y v y + F B ball abs y A B C ball abs x
32 25 31 syl5com v TopOpen fld B v F v A B C ball abs x y + F B ball abs y A B C ball abs x
33 32 impr v TopOpen fld B v F v A B C ball abs x y + F B ball abs y A B C ball abs x
34 33 rexlimiva v TopOpen fld B v F v A B C ball abs x y + F B ball abs y A B C ball abs x
35 23 34 syl6 φ C x + u TopOpen fld C u v TopOpen fld B v F v A B u y + F B ball abs y A B C ball abs x
36 35 ralrimdva φ C u TopOpen fld C u v TopOpen fld B v F v A B u x + y + F B ball abs y A B C ball abs x
37 13 mopni2 abs ∞Met u TopOpen fld C u x + C ball abs x u
38 6 37 mp3an1 u TopOpen fld C u x + C ball abs x u
39 r19.29r x + C ball abs x u x + y + F B ball abs y A B C ball abs x x + C ball abs x u y + F B ball abs y A B C ball abs x
40 3 ad3antrrr φ C x + y + B
41 simpr φ C x + y + y +
42 41 rpxrd φ C x + y + y *
43 13 blopn abs ∞Met B y * B ball abs y TopOpen fld
44 6 40 42 43 mp3an2i φ C x + y + B ball abs y TopOpen fld
45 blcntr abs ∞Met B y + B B ball abs y
46 6 40 41 45 mp3an2i φ C x + y + B B ball abs y
47 eleq2 v = B ball abs y B v B B ball abs y
48 ineq1 v = B ball abs y v A B = B ball abs y A B
49 48 imaeq2d v = B ball abs y F v A B = F B ball abs y A B
50 49 sseq1d v = B ball abs y F v A B C ball abs x F B ball abs y A B C ball abs x
51 47 50 anbi12d v = B ball abs y B v F v A B C ball abs x B B ball abs y F B ball abs y A B C ball abs x
52 51 rspcev B ball abs y TopOpen fld B B ball abs y F B ball abs y A B C ball abs x v TopOpen fld B v F v A B C ball abs x
53 52 expr B ball abs y TopOpen fld B B ball abs y F B ball abs y A B C ball abs x v TopOpen fld B v F v A B C ball abs x
54 44 46 53 syl2anc φ C x + y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B C ball abs x
55 54 rexlimdva φ C x + y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B C ball abs x
56 sstr2 F v A B C ball abs x C ball abs x u F v A B u
57 56 com12 C ball abs x u F v A B C ball abs x F v A B u
58 57 anim2d C ball abs x u B v F v A B C ball abs x B v F v A B u
59 58 reximdv C ball abs x u v TopOpen fld B v F v A B C ball abs x v TopOpen fld B v F v A B u
60 55 59 syl9 φ C x + C ball abs x u y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
61 60 impd φ C x + C ball abs x u y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
62 61 rexlimdva φ C x + C ball abs x u y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
63 39 62 syl5 φ C x + C ball abs x u x + y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
64 63 expd φ C x + C ball abs x u x + y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
65 38 64 syl5 φ C u TopOpen fld C u x + y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
66 65 expdimp φ C u TopOpen fld C u x + y + F B ball abs y A B C ball abs x v TopOpen fld B v F v A B u
67 66 com23 φ C u TopOpen fld x + y + F B ball abs y A B C ball abs x C u v TopOpen fld B v F v A B u
68 67 ralrimdva φ C x + y + F B ball abs y A B C ball abs x u TopOpen fld C u v TopOpen fld B v F v A B u
69 36 68 impbid φ C u TopOpen fld C u v TopOpen fld B v F v A B u x + y + F B ball abs y A B C ball abs x
70 1 ad2antrr φ C x + y + F : A
71 70 ffund φ C x + y + Fun F
72 inss2 B ball abs y A B A B
73 difss A B A
74 70 fdmd φ C x + y + dom F = A
75 73 74 sseqtrrid φ C x + y + A B dom F
76 72 75 sstrid φ C x + y + B ball abs y A B dom F
77 funimass4 Fun F B ball abs y A B dom F F B ball abs y A B C ball abs x z B ball abs y A B F z C ball abs x
78 71 76 77 syl2anc φ C x + y + F B ball abs y A B C ball abs x z B ball abs y A B F z C ball abs x
79 6 a1i φ C x + y + z A B abs ∞Met
80 simplrr φ C x + y + z A B y +
81 80 rpxrd φ C x + y + z A B y *
82 3 ad3antrrr φ C x + y + z A B B
83 73 2 sstrid φ A B
84 83 ad2antrr φ C x + y + A B
85 84 sselda φ C x + y + z A B z
86 elbl3 abs ∞Met y * B z z B ball abs y z abs B < y
87 79 81 82 85 86 syl22anc φ C x + y + z A B z B ball abs y z abs B < y
88 eqid abs = abs
89 88 cnmetdval z B z abs B = z B
90 85 82 89 syl2anc φ C x + y + z A B z abs B = z B
91 90 breq1d φ C x + y + z A B z abs B < y z B < y
92 87 91 bitrd φ C x + y + z A B z B ball abs y z B < y
93 simplrl φ C x + y + z A B x +
94 93 rpxrd φ C x + y + z A B x *
95 simpllr φ C x + y + z A B C
96 eldifi z A B z A
97 ffvelrn F : A z A F z
98 70 96 97 syl2an φ C x + y + z A B F z
99 elbl3 abs ∞Met x * C F z F z C ball abs x F z abs C < x
100 79 94 95 98 99 syl22anc φ C x + y + z A B F z C ball abs x F z abs C < x
101 88 cnmetdval F z C F z abs C = F z C
102 98 95 101 syl2anc φ C x + y + z A B F z abs C = F z C
103 102 breq1d φ C x + y + z A B F z abs C < x F z C < x
104 100 103 bitrd φ C x + y + z A B F z C ball abs x F z C < x
105 92 104 imbi12d φ C x + y + z A B z B ball abs y F z C ball abs x z B < y F z C < x
106 105 ralbidva φ C x + y + z A B z B ball abs y F z C ball abs x z A B z B < y F z C < x
107 elin z B ball abs y A B z B ball abs y z A B
108 107 biancomi z B ball abs y A B z A B z B ball abs y
109 108 imbi1i z B ball abs y A B F z C ball abs x z A B z B ball abs y F z C ball abs x
110 impexp z A B z B ball abs y F z C ball abs x z A B z B ball abs y F z C ball abs x
111 109 110 bitr2i z A B z B ball abs y F z C ball abs x z B ball abs y A B F z C ball abs x
112 111 ralbii2 z A B z B ball abs y F z C ball abs x z B ball abs y A B F z C ball abs x
113 impexp z A z B z B < y F z C < x z A z B z B < y F z C < x
114 eldifsn z A B z A z B
115 114 imbi1i z A B z B < y F z C < x z A z B z B < y F z C < x
116 impexp z B z B < y F z C < x z B z B < y F z C < x
117 116 imbi2i z A z B z B < y F z C < x z A z B z B < y F z C < x
118 113 115 117 3bitr4i z A B z B < y F z C < x z A z B z B < y F z C < x
119 118 ralbii2 z A B z B < y F z C < x z A z B z B < y F z C < x
120 106 112 119 3bitr3g φ C x + y + z B ball abs y A B F z C ball abs x z A z B z B < y F z C < x
121 78 120 bitrd φ C x + y + F B ball abs y A B C ball abs x z A z B z B < y F z C < x
122 121 anassrs φ C x + y + F B ball abs y A B C ball abs x z A z B z B < y F z C < x
123 122 rexbidva φ C x + y + F B ball abs y A B C ball abs x y + z A z B z B < y F z C < x
124 123 ralbidva φ C x + y + F B ball abs y A B C ball abs x x + y + z A z B z B < y F z C < x
125 69 124 bitrd φ C u TopOpen fld C u v TopOpen fld B v F v A B u x + y + z A z B z B < y F z C < x
126 125 pm5.32da φ C u TopOpen fld C u v TopOpen fld B v F v A B u C x + y + z A z B z B < y F z C < x
127 5 126 bitrd φ C F lim B C x + y + z A z B z B < y F z C < x