Metamath Proof Explorer


Theorem ellimcabssub0

Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ellimcabssub0.f F = x A B
ellimcabssub0.g G = x A B C
ellimcabssub0.a φ A
ellimcabssub0.b φ x A B
ellimcabssub0.p φ D
ellimcabssub0.c φ C
Assertion ellimcabssub0 φ C F lim D 0 G lim D

Proof

Step Hyp Ref Expression
1 ellimcabssub0.f F = x A B
2 ellimcabssub0.g G = x A B C
3 ellimcabssub0.a φ A
4 ellimcabssub0.b φ x A B
5 ellimcabssub0.p φ D
6 ellimcabssub0.c φ C
7 0cnd φ 0
8 6 7 2thd φ C 0
9 6 adantr φ x A C
10 4 9 subcld φ x A B C
11 10 2 fmptd φ G : A
12 11 ffvelrnda φ z A G z
13 12 subid1d φ z A G z 0 = G z
14 simpr φ z A z A
15 csbov1g z V z / x B C = z / x B C
16 15 elv z / x B C = z / x B C
17 sban z x φ x A z x φ z x x A
18 nfv x φ
19 18 sbf z x φ φ
20 clelsb1 z x x A z A
21 19 20 anbi12i z x φ z x x A φ z A
22 17 21 bitri z x φ x A φ z A
23 4 nfth x φ x A B
24 23 sbf z x φ x A B φ x A B
25 sbim z x φ x A B z x φ x A z x B
26 24 25 sylbb1 φ x A B z x φ x A z x B
27 22 26 syl5bir φ x A B φ z A z x B
28 4 27 ax-mp φ z A z x B
29 sbsbc z x B [˙z / x]˙ B
30 sbcel1g z V [˙z / x]˙ B z / x B
31 30 elv [˙z / x]˙ B z / x B
32 29 31 bitri z x B z / x B
33 28 32 sylib φ z A z / x B
34 6 adantr φ z A C
35 33 34 subcld φ z A z / x B C
36 16 35 eqeltrid φ z A z / x B C
37 2 fvmpts z A z / x B C G z = z / x B C
38 14 36 37 syl2anc φ z A G z = z / x B C
39 1 fvmpts z A z / x B F z = z / x B
40 14 33 39 syl2anc φ z A F z = z / x B
41 40 oveq1d φ z A F z C = z / x B C
42 16 41 eqtr4id φ z A z / x B C = F z C
43 13 38 42 3eqtrrd φ z A F z C = G z 0
44 43 fveq2d φ z A F z C = G z 0
45 44 breq1d φ z A F z C < y G z 0 < y
46 45 imbi2d φ z A z D z D < w F z C < y z D z D < w G z 0 < y
47 46 ralbidva φ z A z D z D < w F z C < y z A z D z D < w G z 0 < y
48 47 rexbidv φ w + z A z D z D < w F z C < y w + z A z D z D < w G z 0 < y
49 48 ralbidv φ y + w + z A z D z D < w F z C < y y + w + z A z D z D < w G z 0 < y
50 8 49 anbi12d φ C y + w + z A z D z D < w F z C < y 0 y + w + z A z D z D < w G z 0 < y
51 4 1 fmptd φ F : A
52 51 3 5 ellimc3 φ C F lim D C y + w + z A z D z D < w F z C < y
53 11 3 5 ellimc3 φ 0 G lim D 0 y + w + z A z D z D < w G z 0 < y
54 50 52 53 3bitr4d φ C F lim D 0 G lim D