Step |
Hyp |
Ref |
Expression |
1 |
|
ellimcabssub0.f |
|
2 |
|
ellimcabssub0.g |
|
3 |
|
ellimcabssub0.a |
|
4 |
|
ellimcabssub0.b |
|
5 |
|
ellimcabssub0.p |
|
6 |
|
ellimcabssub0.c |
|
7 |
|
0cnd |
|
8 |
6 7
|
2thd |
|
9 |
6
|
adantr |
|
10 |
4 9
|
subcld |
|
11 |
10 2
|
fmptd |
|
12 |
11
|
ffvelrnda |
|
13 |
12
|
subid1d |
|
14 |
|
simpr |
|
15 |
|
csbov1g |
|
16 |
15
|
elv |
|
17 |
|
sban |
|
18 |
|
nfv |
|
19 |
18
|
sbf |
|
20 |
|
clelsb1 |
|
21 |
19 20
|
anbi12i |
|
22 |
17 21
|
bitri |
|
23 |
4
|
nfth |
|
24 |
23
|
sbf |
|
25 |
|
sbim |
|
26 |
24 25
|
sylbb1 |
|
27 |
22 26
|
syl5bir |
|
28 |
4 27
|
ax-mp |
|
29 |
|
sbsbc |
|
30 |
|
sbcel1g |
|
31 |
30
|
elv |
|
32 |
29 31
|
bitri |
|
33 |
28 32
|
sylib |
|
34 |
6
|
adantr |
|
35 |
33 34
|
subcld |
|
36 |
16 35
|
eqeltrid |
|
37 |
2
|
fvmpts |
|
38 |
14 36 37
|
syl2anc |
|
39 |
1
|
fvmpts |
|
40 |
14 33 39
|
syl2anc |
|
41 |
40
|
oveq1d |
|
42 |
16 41
|
eqtr4id |
|
43 |
13 38 42
|
3eqtrrd |
|
44 |
43
|
fveq2d |
|
45 |
44
|
breq1d |
|
46 |
45
|
imbi2d |
|
47 |
46
|
ralbidva |
|
48 |
47
|
rexbidv |
|
49 |
48
|
ralbidv |
|
50 |
8 49
|
anbi12d |
|
51 |
4 1
|
fmptd |
|
52 |
51 3 5
|
ellimc3 |
|
53 |
11 3 5
|
ellimc3 |
|
54 |
50 52 53
|
3bitr4d |
|