Metamath Proof Explorer


Theorem ellimciota

Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ellimciota.f φ F : A
ellimciota.a φ A
ellimciota.b φ B limPt K A
ellimciota.4 φ F lim B
ellimciota.k K = TopOpen fld
Assertion ellimciota φ ι x | x F lim B F lim B

Proof

Step Hyp Ref Expression
1 ellimciota.f φ F : A
2 ellimciota.a φ A
3 ellimciota.b φ B limPt K A
4 ellimciota.4 φ F lim B
5 ellimciota.k K = TopOpen fld
6 eleq1 x = y x F lim B y F lim B
7 6 cbviotavw ι x | x F lim B = ι y | y F lim B
8 iotaex ι y | y F lim B V
9 n0 F lim B x x F lim B
10 4 9 sylib φ x x F lim B
11 1 2 3 5 limcmo φ * x x F lim B
12 df-eu ∃! x x F lim B x x F lim B * x x F lim B
13 10 11 12 sylanbrc φ ∃! x x F lim B
14 eleq1 x = ι y | y F lim B x F lim B ι y | y F lim B F lim B
15 14 iota2 ι y | y F lim B V ∃! x x F lim B ι y | y F lim B F lim B ι x | x F lim B = ι y | y F lim B
16 8 13 15 sylancr φ ι y | y F lim B F lim B ι x | x F lim B = ι y | y F lim B
17 7 16 mpbiri φ ι y | y F lim B F lim B
18 7 17 eqeltrid φ ι x | x F lim B F lim B