Metamath Proof Explorer


Theorem ellnfn

Description: Property defining a linear functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion ellnfn TLinFnT:xyzTxy+z=xTy+Tz

Proof

Step Hyp Ref Expression
1 fveq1 t=Ttxy+z=Txy+z
2 fveq1 t=Tty=Ty
3 2 oveq2d t=Txty=xTy
4 fveq1 t=Ttz=Tz
5 3 4 oveq12d t=Txty+tz=xTy+Tz
6 1 5 eqeq12d t=Ttxy+z=xty+tzTxy+z=xTy+Tz
7 6 ralbidv t=Tztxy+z=xty+tzzTxy+z=xTy+Tz
8 7 2ralbidv t=Txyztxy+z=xty+tzxyzTxy+z=xTy+Tz
9 df-lnfn LinFn=t|xyztxy+z=xty+tz
10 8 9 elrab2 TLinFnTxyzTxy+z=xTy+Tz
11 cnex V
12 ax-hilex V
13 11 12 elmap TT:
14 13 anbi1i TxyzTxy+z=xTy+TzT:xyzTxy+z=xTy+Tz
15 10 14 bitri TLinFnT:xyzTxy+z=xTy+Tz