Metamath Proof Explorer


Theorem ello1

Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion ello1 F 𝑂1 F 𝑝𝑚 x m y dom F x +∞ F y m

Proof

Step Hyp Ref Expression
1 dmeq f = F dom f = dom F
2 1 ineq1d f = F dom f x +∞ = dom F x +∞
3 fveq1 f = F f y = F y
4 3 breq1d f = F f y m F y m
5 2 4 raleqbidv f = F y dom f x +∞ f y m y dom F x +∞ F y m
6 5 2rexbidv f = F x m y dom f x +∞ f y m x m y dom F x +∞ F y m
7 df-lo1 𝑂1 = f 𝑝𝑚 | x m y dom f x +∞ f y m
8 6 7 elrab2 F 𝑂1 F 𝑝𝑚 x m y dom F x +∞ F y m