Metamath Proof Explorer


Theorem ello1d

Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 φ A
ello1mpt.2 φ x A B
ello1d.3 φ C
ello1d.4 φ M
ello1d.5 φ x A C x B M
Assertion ello1d φ x A B 𝑂1

Proof

Step Hyp Ref Expression
1 ello1mpt.1 φ A
2 ello1mpt.2 φ x A B
3 ello1d.3 φ C
4 ello1d.4 φ M
5 ello1d.5 φ x A C x B M
6 5 expr φ x A C x B M
7 6 ralrimiva φ x A C x B M
8 breq1 y = C y x C x
9 8 imbi1d y = C y x B m C x B m
10 9 ralbidv y = C x A y x B m x A C x B m
11 breq2 m = M B m B M
12 11 imbi2d m = M C x B m C x B M
13 12 ralbidv m = M x A C x B m x A C x B M
14 10 13 rspc2ev C M x A C x B M y m x A y x B m
15 3 4 7 14 syl3anc φ y m x A y x B m
16 1 2 ello1mpt φ x A B 𝑂1 y m x A y x B m
17 15 16 mpbird φ x A B 𝑂1