Metamath Proof Explorer


Theorem ello1mpt

Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 φ A
ello1mpt.2 φ x A B
Assertion ello1mpt φ x A B 𝑂1 y m x A y x B m

Proof

Step Hyp Ref Expression
1 ello1mpt.1 φ A
2 ello1mpt.2 φ x A B
3 2 fmpttd φ x A B : A
4 ello12 x A B : A A x A B 𝑂1 y m z A y z x A B z m
5 3 1 4 syl2anc φ x A B 𝑂1 y m z A y z x A B z m
6 nfv x y z
7 nffvmpt1 _ x x A B z
8 nfcv _ x
9 nfcv _ x m
10 7 8 9 nfbr x x A B z m
11 6 10 nfim x y z x A B z m
12 nfv z y x x A B x m
13 breq2 z = x y z y x
14 fveq2 z = x x A B z = x A B x
15 14 breq1d z = x x A B z m x A B x m
16 13 15 imbi12d z = x y z x A B z m y x x A B x m
17 11 12 16 cbvralw z A y z x A B z m x A y x x A B x m
18 simpr φ x A x A
19 eqid x A B = x A B
20 19 fvmpt2 x A B x A B x = B
21 18 2 20 syl2anc φ x A x A B x = B
22 21 breq1d φ x A x A B x m B m
23 22 imbi2d φ x A y x x A B x m y x B m
24 23 ralbidva φ x A y x x A B x m x A y x B m
25 17 24 syl5bb φ z A y z x A B z m x A y x B m
26 25 2rexbidv φ y m z A y z x A B z m y m x A y x B m
27 5 26 bitrd φ x A B 𝑂1 y m x A y x B m