Metamath Proof Explorer


Theorem ellogdm

Description: Elementhood in the "continuous domain" of the complex logarithm. (Contributed by Mario Carneiro, 18-Feb-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion ellogdm A D A A A +

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 1 eleq2i A D A −∞ 0
3 eldif A −∞ 0 A ¬ A −∞ 0
4 mnfxr −∞ *
5 0re 0
6 elioc2 −∞ * 0 A −∞ 0 A −∞ < A A 0
7 4 5 6 mp2an A −∞ 0 A −∞ < A A 0
8 df-3an A −∞ < A A 0 A −∞ < A A 0
9 mnflt A −∞ < A
10 9 pm4.71i A A −∞ < A
11 10 anbi1i A A 0 A −∞ < A A 0
12 lenlt A 0 A 0 ¬ 0 < A
13 5 12 mpan2 A A 0 ¬ 0 < A
14 elrp A + A 0 < A
15 14 baib A A + 0 < A
16 15 notbid A ¬ A + ¬ 0 < A
17 13 16 bitr4d A A 0 ¬ A +
18 17 pm5.32i A A 0 A ¬ A +
19 11 18 bitr3i A −∞ < A A 0 A ¬ A +
20 7 8 19 3bitri A −∞ 0 A ¬ A +
21 20 notbii ¬ A −∞ 0 ¬ A ¬ A +
22 iman A A + ¬ A ¬ A +
23 21 22 bitr4i ¬ A −∞ 0 A A +
24 23 anbi2i A ¬ A −∞ 0 A A A +
25 2 3 24 3bitri A D A A A +