Metamath Proof Explorer


Theorem ellogrn

Description: Write out the property A e. ran log explicitly. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion ellogrn A ran log A π < A A π

Proof

Step Hyp Ref Expression
1 imf :
2 ffn : Fn
3 elpreima Fn A -1 π π A A π π
4 1 2 3 mp2b A -1 π π A A π π
5 pire π
6 5 renegcli π
7 6 rexri π *
8 elioc2 π * π A π π A π < A A π
9 7 5 8 mp2an A π π A π < A A π
10 3anass A π < A A π A π < A A π
11 9 10 bitri A π π A π < A A π
12 imcl A A
13 12 biantrurd A π < A A π A π < A A π
14 11 13 bitr4id A A π π π < A A π
15 14 pm5.32i A A π π A π < A A π
16 4 15 bitri A -1 π π A π < A A π
17 logrn ran log = -1 π π
18 17 eleq2i A ran log A -1 π π
19 3anass A π < A A π A π < A A π
20 16 18 19 3bitr4i A ran log A π < A A π