Metamath Proof Explorer


Theorem ellspd

Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by AV, 24-Jun-2019) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses ellspd.n N = LSpan M
ellspd.v B = Base M
ellspd.k K = Base S
ellspd.s S = Scalar M
ellspd.z 0 ˙ = 0 S
ellspd.t · ˙ = M
ellspd.f φ F : I B
ellspd.m φ M LMod
ellspd.i φ I V
Assertion ellspd φ X N F I f K I finSupp 0 ˙ f X = M f · ˙ f F

Proof

Step Hyp Ref Expression
1 ellspd.n N = LSpan M
2 ellspd.v B = Base M
3 ellspd.k K = Base S
4 ellspd.s S = Scalar M
5 ellspd.z 0 ˙ = 0 S
6 ellspd.t · ˙ = M
7 ellspd.f φ F : I B
8 ellspd.m φ M LMod
9 ellspd.i φ I V
10 ffn F : I B F Fn I
11 fnima F Fn I F I = ran F
12 7 10 11 3syl φ F I = ran F
13 12 fveq2d φ N F I = N ran F
14 eqid f Base S freeLMod I M f · ˙ f F = f Base S freeLMod I M f · ˙ f F
15 14 rnmpt ran f Base S freeLMod I M f · ˙ f F = a | f Base S freeLMod I a = M f · ˙ f F
16 eqid S freeLMod I = S freeLMod I
17 eqid Base S freeLMod I = Base S freeLMod I
18 4 a1i φ S = Scalar M
19 16 17 2 6 14 8 9 18 7 1 frlmup3 φ ran f Base S freeLMod I M f · ˙ f F = N ran F
20 15 19 eqtr3id φ a | f Base S freeLMod I a = M f · ˙ f F = N ran F
21 13 20 eqtr4d φ N F I = a | f Base S freeLMod I a = M f · ˙ f F
22 21 eleq2d φ X N F I X a | f Base S freeLMod I a = M f · ˙ f F
23 ovex M f · ˙ f F V
24 eleq1 X = M f · ˙ f F X V M f · ˙ f F V
25 23 24 mpbiri X = M f · ˙ f F X V
26 25 rexlimivw f Base S freeLMod I X = M f · ˙ f F X V
27 eqeq1 a = X a = M f · ˙ f F X = M f · ˙ f F
28 27 rexbidv a = X f Base S freeLMod I a = M f · ˙ f F f Base S freeLMod I X = M f · ˙ f F
29 26 28 elab3 X a | f Base S freeLMod I a = M f · ˙ f F f Base S freeLMod I X = M f · ˙ f F
30 4 fvexi S V
31 eqid a K I | finSupp 0 ˙ a = a K I | finSupp 0 ˙ a
32 16 3 5 31 frlmbas S V I V a K I | finSupp 0 ˙ a = Base S freeLMod I
33 30 9 32 sylancr φ a K I | finSupp 0 ˙ a = Base S freeLMod I
34 33 eqcomd φ Base S freeLMod I = a K I | finSupp 0 ˙ a
35 34 rexeqdv φ f Base S freeLMod I X = M f · ˙ f F f a K I | finSupp 0 ˙ a X = M f · ˙ f F
36 breq1 a = f finSupp 0 ˙ a finSupp 0 ˙ f
37 36 rexrab f a K I | finSupp 0 ˙ a X = M f · ˙ f F f K I finSupp 0 ˙ f X = M f · ˙ f F
38 35 37 bitrdi φ f Base S freeLMod I X = M f · ˙ f F f K I finSupp 0 ˙ f X = M f · ˙ f F
39 29 38 syl5bb φ X a | f Base S freeLMod I a = M f · ˙ f F f K I finSupp 0 ˙ f X = M f · ˙ f F
40 22 39 bitrd φ X N F I f K I finSupp 0 ˙ f X = M f · ˙ f F