Metamath Proof Explorer


Theorem ellspsn4

Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn4 analog.) (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses ellspsn4.v V = Base W
ellspsn4.o 0 ˙ = 0 W
ellspsn4.s S = LSubSp W
ellspsn4.n N = LSpan W
ellspsn4.w φ W LVec
ellspsn4.u φ U S
ellspsn4.x φ X V
ellspsn4.y φ Y N X
ellspsn4.z φ Y 0 ˙
Assertion ellspsn4 φ X U Y U

Proof

Step Hyp Ref Expression
1 ellspsn4.v V = Base W
2 ellspsn4.o 0 ˙ = 0 W
3 ellspsn4.s S = LSubSp W
4 ellspsn4.n N = LSpan W
5 ellspsn4.w φ W LVec
6 ellspsn4.u φ U S
7 ellspsn4.x φ X V
8 ellspsn4.y φ Y N X
9 ellspsn4.z φ Y 0 ˙
10 lveclmod W LVec W LMod
11 5 10 syl φ W LMod
12 11 adantr φ X U W LMod
13 6 adantr φ X U U S
14 simpr φ X U X U
15 8 adantr φ X U Y N X
16 3 4 12 13 14 15 ellspsn3 φ X U Y U
17 11 adantr φ Y U W LMod
18 6 adantr φ Y U U S
19 simpr φ Y U Y U
20 1 4 lspsnid W LMod X V X N X
21 11 7 20 syl2anc φ X N X
22 1 2 4 5 7 8 9 lspsneleq φ N Y = N X
23 21 22 eleqtrrd φ X N Y
24 23 adantr φ Y U X N Y
25 3 4 17 18 19 24 ellspsn3 φ Y U X U
26 16 25 impbida φ X U Y U