Metamath Proof Explorer


Theorem ellspsn5

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015)

Ref Expression
Hypotheses ellspsn5.s S = LSubSp W
ellspsn5.n N = LSpan W
ellspsn5.w φ W LMod
ellspsn5.a φ U S
ellspsn5.x φ X U
Assertion ellspsn5 φ N X U

Proof

Step Hyp Ref Expression
1 ellspsn5.s S = LSubSp W
2 ellspsn5.n N = LSpan W
3 ellspsn5.w φ W LMod
4 ellspsn5.a φ U S
5 ellspsn5.x φ X U
6 eqid Base W = Base W
7 6 1 lssel U S X U X Base W
8 4 5 7 syl2anc φ X Base W
9 6 1 2 3 4 8 ellspsn5b φ X U N X U
10 5 9 mpbid φ N X U