Metamath Proof Explorer


Theorem ellspsn5b

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)

Ref Expression
Hypotheses ellspsn5b.v V = Base W
ellspsn5b.s S = LSubSp W
ellspsn5b.n N = LSpan W
ellspsn5b.w φ W LMod
ellspsn5b.a φ U S
ellspsn5b.x φ X V
Assertion ellspsn5b φ X U N X U

Proof

Step Hyp Ref Expression
1 ellspsn5b.v V = Base W
2 ellspsn5b.s S = LSubSp W
3 ellspsn5b.n N = LSpan W
4 ellspsn5b.w φ W LMod
5 ellspsn5b.a φ U S
6 ellspsn5b.x φ X V
7 1 2 3 4 5 ellspsn6 φ X U X V N X U
8 6 7 mpbirand φ X U N X U