Metamath Proof Explorer


Theorem elmapresaun

Description: fresaun transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion elmapresaun F C A G C B F A B = G A B F G C A B

Proof

Step Hyp Ref Expression
1 elmapi F C A F : A C
2 elmapi G C B G : B C
3 id F A B = G A B F A B = G A B
4 fresaun F : A C G : B C F A B = G A B F G : A B C
5 1 2 3 4 syl3an F C A G C B F A B = G A B F G : A B C
6 elmapex F C A C V A V
7 6 simpld F C A C V
8 7 3ad2ant1 F C A G C B F A B = G A B C V
9 6 simprd F C A A V
10 elmapex G C B C V B V
11 10 simprd G C B B V
12 unexg A V B V A B V
13 9 11 12 syl2an F C A G C B A B V
14 13 3adant3 F C A G C B F A B = G A B A B V
15 8 14 elmapd F C A G C B F A B = G A B F G C A B F G : A B C
16 5 15 mpbird F C A G C B F A B = G A B F G C A B