Metamath Proof Explorer


Theorem elmapsnd

Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses elmapsnd.1 φ F Fn A
elmapsnd.2 φ B V
elmapsnd.3 φ F A B
Assertion elmapsnd φ F B A

Proof

Step Hyp Ref Expression
1 elmapsnd.1 φ F Fn A
2 elmapsnd.2 φ B V
3 elmapsnd.3 φ F A B
4 elsni x A x = A
5 4 fveq2d x A F x = F A
6 5 adantl φ x A F x = F A
7 3 adantr φ x A F A B
8 6 7 eqeltrd φ x A F x B
9 8 ralrimiva φ x A F x B
10 1 9 jca φ F Fn A x A F x B
11 ffnfv F : A B F Fn A x A F x B
12 10 11 sylibr φ F : A B
13 snex A V
14 13 a1i φ A V
15 2 14 elmapd φ F B A F : A B
16 12 15 mpbird φ F B A