Metamath Proof Explorer


Theorem elmapssres

Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion elmapssres A B C D C A D B D

Proof

Step Hyp Ref Expression
1 elmapi A B C A : C B
2 fssres A : C B D C A D : D B
3 1 2 sylan A B C D C A D : D B
4 elmapex A B C B V C V
5 4 simpld A B C B V
6 5 adantr A B C D C B V
7 4 simprd A B C C V
8 ssexg D C C V D V
9 8 ancoms C V D C D V
10 7 9 sylan A B C D C D V
11 6 10 elmapd A B C D C A D B D A D : D B
12 3 11 mpbird A B C D C A D B D