Metamath Proof Explorer


Theorem elmopn

Description: The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J = MetOpen D
Assertion elmopn D ∞Met X A J A X x A y ran ball D x y y A

Proof

Step Hyp Ref Expression
1 mopnval.1 J = MetOpen D
2 1 mopnval D ∞Met X J = topGen ran ball D
3 2 eleq2d D ∞Met X A J A topGen ran ball D
4 blbas D ∞Met X ran ball D TopBases
5 eltg2 ran ball D TopBases A topGen ran ball D A ran ball D x A y ran ball D x y y A
6 4 5 syl D ∞Met X A topGen ran ball D A ran ball D x A y ran ball D x y y A
7 unirnbl D ∞Met X ran ball D = X
8 7 sseq2d D ∞Met X A ran ball D A X
9 8 anbi1d D ∞Met X A ran ball D x A y ran ball D x y y A A X x A y ran ball D x y y A
10 3 6 9 3bitrd D ∞Met X A J A X x A y ran ball D x y y A