Metamath Proof Explorer


Theorem elmopn2

Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J = MetOpen D
Assertion elmopn2 D ∞Met X A J A X x A y + x ball D y A

Proof

Step Hyp Ref Expression
1 mopnval.1 J = MetOpen D
2 1 elmopn D ∞Met X A J A X x A z ran ball D x z z A
3 ssel2 A X x A x X
4 blssex D ∞Met X x X z ran ball D x z z A y + x ball D y A
5 3 4 sylan2 D ∞Met X A X x A z ran ball D x z z A y + x ball D y A
6 5 anassrs D ∞Met X A X x A z ran ball D x z z A y + x ball D y A
7 6 ralbidva D ∞Met X A X x A z ran ball D x z z A x A y + x ball D y A
8 7 pm5.32da D ∞Met X A X x A z ran ball D x z z A A X x A y + x ball D y A
9 2 8 bitrd D ∞Met X A J A X x A y + x ball D y A