Metamath Proof Explorer


Theorem elmpocl

Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis elmpocl.f F = x A , y B C
Assertion elmpocl X S F T S A T B

Proof

Step Hyp Ref Expression
1 elmpocl.f F = x A , y B C
2 df-mpo x A , y B C = x y z | x A y B z = C
3 1 2 eqtri F = x y z | x A y B z = C
4 3 dmeqi dom F = dom x y z | x A y B z = C
5 dmoprabss dom x y z | x A y B z = C A × B
6 4 5 eqsstri dom F A × B
7 elfvdm X F S T S T dom F
8 df-ov S F T = F S T
9 7 8 eleq2s X S F T S T dom F
10 6 9 sselid X S F T S T A × B
11 opelxp S T A × B S A T B
12 10 11 sylib X S F T S A T B