Metamath Proof Explorer


Theorem elnelall

Description: A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Assertion elnelall A B A B φ

Proof

Step Hyp Ref Expression
1 df-nel A B ¬ A B
2 pm2.24 A B ¬ A B φ
3 1 2 syl5bi A B A B φ