Metamath Proof Explorer


Theorem elnelne1

Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020)

Ref Expression
Assertion elnelne1 A B A C B C

Proof

Step Hyp Ref Expression
1 df-nel A C ¬ A C
2 nelne1 A B ¬ A C B C
3 1 2 sylan2b A B A C B C