Metamath Proof Explorer


Theorem elnelun

Description: The union of the set of elements s determining classes C (which may depend on s ) containing a special element and the set of elements s determining classes C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020) (Revised by AV, 17-Dec-2021)

Ref Expression
Hypotheses elneldisj.e E = s A | B C
elneldisj.n N = s A | B C
Assertion elnelun E N = A

Proof

Step Hyp Ref Expression
1 elneldisj.e E = s A | B C
2 elneldisj.n N = s A | B C
3 df-nel B C ¬ B C
4 3 rabbii s A | B C = s A | ¬ B C
5 2 4 eqtri N = s A | ¬ B C
6 1 5 uneq12i E N = s A | B C s A | ¬ B C
7 rabxm A = s A | B C s A | ¬ B C
8 6 7 eqtr4i E N = A