Metamath Proof Explorer


Theorem elnlfn

Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elnlfn T : A null T A T A = 0

Proof

Step Hyp Ref Expression
1 nlfnval T : null T = T -1 0
2 cnvimass T -1 0 dom T
3 1 2 eqsstrdi T : null T dom T
4 fdm T : dom T =
5 3 4 sseqtrd T : null T
6 5 sseld T : A null T A
7 6 pm4.71rd T : A null T A A null T
8 1 eleq2d T : A null T A T -1 0
9 8 adantr T : A A null T A T -1 0
10 ffn T : T Fn
11 eleq1 x = A x T -1 0 A T -1 0
12 fveqeq2 x = A T x = 0 T A = 0
13 11 12 bibi12d x = A x T -1 0 T x = 0 A T -1 0 T A = 0
14 13 imbi2d x = A T Fn x T -1 0 T x = 0 T Fn A T -1 0 T A = 0
15 0cn 0
16 vex x V
17 16 eliniseg 0 x T -1 0 x T 0
18 15 17 ax-mp x T -1 0 x T 0
19 fnbrfvb T Fn x T x = 0 x T 0
20 18 19 bitr4id T Fn x x T -1 0 T x = 0
21 20 expcom x T Fn x T -1 0 T x = 0
22 14 21 vtoclga A T Fn A T -1 0 T A = 0
23 10 22 mpan9 T : A A T -1 0 T A = 0
24 9 23 bitrd T : A A null T T A = 0
25 24 pm5.32da T : A A null T A T A = 0
26 7 25 bitrd T : A null T A T A = 0