Metamath Proof Explorer


Theorem elnlfn2

Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elnlfn2 T : A null T T A = 0

Proof

Step Hyp Ref Expression
1 elnlfn T : A null T A T A = 0
2 1 simplbda T : A null T T A = 0