Database
BASIC ALGEBRAIC STRUCTURES
Groups
Subgroups and Quotient groups
elnmz
Next ⟩
nmzbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
elnmz
Description:
Elementhood in the normalizer.
(Contributed by
Mario Carneiro
, 18-Jan-2015)
Ref
Expression
Hypothesis
elnmz.1
⊢
N
=
x
∈
X
|
∀
y
∈
X
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
Assertion
elnmz
⊢
A
∈
N
↔
A
∈
X
∧
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
Proof
Step
Hyp
Ref
Expression
1
elnmz.1
⊢
N
=
x
∈
X
|
∀
y
∈
X
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
2
oveq2
⊢
y
=
z
→
x
+
˙
y
=
x
+
˙
z
3
2
eleq1d
⊢
y
=
z
→
x
+
˙
y
∈
S
↔
x
+
˙
z
∈
S
4
oveq1
⊢
y
=
z
→
y
+
˙
x
=
z
+
˙
x
5
4
eleq1d
⊢
y
=
z
→
y
+
˙
x
∈
S
↔
z
+
˙
x
∈
S
6
3
5
bibi12d
⊢
y
=
z
→
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
↔
x
+
˙
z
∈
S
↔
z
+
˙
x
∈
S
7
6
cbvralvw
⊢
∀
y
∈
X
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
↔
∀
z
∈
X
x
+
˙
z
∈
S
↔
z
+
˙
x
∈
S
8
oveq1
⊢
x
=
A
→
x
+
˙
z
=
A
+
˙
z
9
8
eleq1d
⊢
x
=
A
→
x
+
˙
z
∈
S
↔
A
+
˙
z
∈
S
10
oveq2
⊢
x
=
A
→
z
+
˙
x
=
z
+
˙
A
11
10
eleq1d
⊢
x
=
A
→
z
+
˙
x
∈
S
↔
z
+
˙
A
∈
S
12
9
11
bibi12d
⊢
x
=
A
→
x
+
˙
z
∈
S
↔
z
+
˙
x
∈
S
↔
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
13
12
ralbidv
⊢
x
=
A
→
∀
z
∈
X
x
+
˙
z
∈
S
↔
z
+
˙
x
∈
S
↔
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
14
7
13
syl5bb
⊢
x
=
A
→
∀
y
∈
X
x
+
˙
y
∈
S
↔
y
+
˙
x
∈
S
↔
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S
15
14
1
elrab2
⊢
A
∈
N
↔
A
∈
X
∧
∀
z
∈
X
A
+
˙
z
∈
S
↔
z
+
˙
A
∈
S