Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The natural numbers (i.e., finite ordinals)
elnn
Next ⟩
omon
Metamath Proof Explorer
Ascii
Unicode
Theorem
elnn
Description:
A member of a natural number is a natural number.
(Contributed by
NM
, 21-Jun-1998)
Ref
Expression
Assertion
elnn
⊢
A
∈
B
∧
B
∈
ω
→
A
∈
ω
Proof
Step
Hyp
Ref
Expression
1
trom
⊢
Tr
⁡
ω
2
trel
⊢
Tr
⁡
ω
→
A
∈
B
∧
B
∈
ω
→
A
∈
ω
3
1
2
ax-mp
⊢
A
∈
B
∧
B
∈
ω
→
A
∈
ω