Metamath Proof Explorer


Theorem elnn0

Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Assertion elnn0 A 0 A A = 0

Proof

Step Hyp Ref Expression
1 df-n0 0 = 0
2 1 eleq2i A 0 A 0
3 elun A 0 A A 0
4 c0ex 0 V
5 4 elsn2 A 0 A = 0
6 5 orbi2i A A 0 A A = 0
7 2 3 6 3bitri A 0 A A = 0