Metamath Proof Explorer


Theorem elnn1uz2

Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion elnn1uz2 N N = 1 N 2

Proof

Step Hyp Ref Expression
1 eluz2b3 N 2 N N 1
2 1 orbi2i N = 1 N 2 N = 1 N N 1
3 exmidne N = 1 N 1
4 ordi N = 1 N N 1 N = 1 N N = 1 N 1
5 3 4 mpbiran2 N = 1 N N 1 N = 1 N
6 1nn 1
7 eleq1 N = 1 N 1
8 6 7 mpbiri N = 1 N
9 pm2.621 N = 1 N N = 1 N N
10 8 9 ax-mp N = 1 N N
11 olc N N = 1 N
12 10 11 impbii N = 1 N N
13 2 5 12 3bitrri N N = 1 N 2